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Abstract

For a general Hamiltonian appropriate to a single canonical degree of freedom, we char-
acterize and define a universal propagator with the property that it correctly evolves the

coherent-state Hilbert space representatives for an arbitrary fiducial vector. The universal

propagator is explicitly constructed for the harmonic oscillator, with a result that differs

from the conventional propagators for this system.

1 Introduction

Canonical coherent states, and the coherent state propagator they engender, have been around

for over three decadesJ -3 In essence, their construction is simplicity itself. Let P and Q denote

an irreducible pair of self-adjoint Heisenberg operators satisfying [Q, P] = i(h = 1), and let

IP, q; r/) = e -'¢PeivQIT/)

denote a family of normalized states defined for a fixed fiducial vector [T/), (_?]r/) = 1, and for all

(p, q) E R 2. These states are the canonical coherent states and they admit a resolution of unity

in the form

f IP, q; TI)(P, q; TI]dpdq/2_r = I,

for any It/), when integrated over all phase space. 2 These states lead to a representation of Hilbert

space H by bounded, continuous functions,

¢,(P,q) _- (P,q;_ll¢),

defined for all I¢) E H, that evidently depend on the choice of IT]), although that dependence is

often left implicit. An inner product in this representation is afforded by

(¢1¢) = n(P,q)d2n(P,q)dpdq/27r ,

an integral which removes all trace of the fiducial vector IT/).
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1.1 ; PrOpagat6rs;

The abstract Schr6dinger equation

 010) =

involving the self-adjoint Hamiltonian 7if, is formally solved with the aid of the evolution operator

U(t) = exp(-itT_), namely

]_(t")) - e-'(e'-e)_l_,(t')).

In a coherent-state representation the evolution is effected by an integral kernel

K_(p", q ", t"; p', q', t/) -- (p,,, q,; _[e-i(t"-t')_[p,, q,; T?)

in the form

¢_(p",q",t") = J K,(p",q",t"; p',q',t')¢_(p',q',t')dp'dq'/27r.

Clearly, K, depends strongly on the fiducial vector as does k,,.

Our goal in this paper is to formulate a universal propagator K(p", q", t"; p', q', t'), a single

function independent of any particular fiducial vector, which, nevertheless, has the property that

_b,7(p" , q", t") f K(p", " ""= q ,r ;p',q',t')g2,7(p',q ,t')dp'dq'/27r (1)

holds just as before for any choice of fiducial vector.

The functions K, and K are qualitatively different as is clear from their behavior as t" --, t'.

In particular

lim Ko(p",q",t";p',q',t') = (p",q";_lp',q';_?) (2)
t"--*t'

which clearly retains a strong dependence on the fiducial vector. On the other hand, if (1) is to

hold for any 0, we must require that

lim K(p",q",t";p',q',t') = 2_'5(p" - p')5(q"- q').
t"--.t'

(3)

Next let us turn our attention to a suitable differential equation satisfied by I(_ and K. It is

straightforward to see that

(-iff-_)(P,q;_'_b> = (P,q;_IP]_2),

_pp (P, q; r/[¢') = (P, q;'71QI¢)

Thus if 7"t = _(P, Q) denotes the Hamiltonian it follows thathold quite independently of It/).

SchrSdinger's equation takes the form

i ff-_l,_(p, q,t) = (p,q;,71_(P,Q)lV(t))

.0 0

= H(-Z-_q,q + i_p)_,,7(p,
q,t)
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valid for any Irt).3The propagatorsare alsosolutionsof Schrhdinger'sequation so it follows that

.0 0

iOg#(p,q,t;p',q',t ') = "H(-Z_qq,q + i-_p)g#(p,q,t;p',q',t'), (4)

where K# denotes either K, or K. What distinguishes which function is under consideration is

the initial condition (at t = t') of the solution, namely, either (2) or (3).

When K. is under consideration, the operators -i_ and q + i_ refer to a single degree of

freedom made irreducible by confining attention to the subspace of L2(R 2, dpdq/2_) spanned by

C.(p, q) for a fixed Irl) and for all [¢) E H. This restriction is implicit in K. because as t" --_ t'

the resultant integral kernel (p", q"; y[p', q_;7}) is a projection operator onto the subspace of an

irreducible representation.

1.2 The Universal Propagator

In contrast to the former case, when the universal propagator K is under consideration the resul-

tant Schrhdinger equation (4) is interpreted as one appropriate to two degrees of freedom. In this

view yt = q and y2 = P denote two "coordinates", and one is looking at the irreducible Schrhdinger

representation of a special class of two-variable Hamiltonians, ones where the classical Hamiltonian

is restricted to have the form Hc(pl, yl - p2), rather than the most general form Hc(px, p2,Y_, y2).

In the case of K, and based on the interpretation described above, a standard phase-space path

integral solution may be given for the universal propagator. In particular, and for a sufficiently

wide class of Hamiltonians, it follows that

K (p", q", t"; p', q', t') = .A,4f ei ft_f'+k4-_(k'q-r)ldt:Dp'DqT)kTPx .

Note that "x" and "k" are "momenta" conjugate to the "coordinates" "p" and "q', and also that

the special form of the Hamiltonian has been used. In the standard phase-space path integral there

is always one more (k, x) pair of integrals compared to the (p, q) family, and the (k, x) integrals are

unrestricted. This situation is made explicit in the regularized prescription for the path integral

given, in standard notation, by

K(p",q",t";p',q',t')

L_t_

L L

× lI dptdqt H dkt+_dxt+_ / (27r)2 '
t=l t=O

where PL+t, qL+l = P", q", Po, qo = P', q', and where (L + 1)e = (t" - t') is held fixed. Let us first

change the variables zt+_ " _ zt+½ + (qt+l + qt)/2, followed by a second change xt+ ½ _ -xe+_.
The resultant regularized' path integral reads

K(p",q",t";p',q',t')
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e'_t=o[2(q_+_+q_)(pt+_-pt)+kt+ ½(qt+_-qt)-_+ ½(Pt+_-pt)-_n(kt+ ½,_t+_ )]"_ Jlimo 2r f.. " . L 1

L L

× IX dptdqt 1-I dkt+_dxt+_ / (2_r) 2 ,
l=l g=O

or the formal path integral is given by

K(p", q", t"; p', q', t') = M f ei f[qi'+k4-*i'-_c(k'*)latDpDqDkDx , (5)

which is our final expression for the universal propagator in the present case. From this formula

it is clear that the dependence on p" and p' is always of the form p" - p', and the dependence on

1 t . (p.q" and q' is always of the form q" - q' save for the universal phase factor _tq + q') - p'). In
other words,

K(p", q", t"; p', q', t') = F(p" - p', q" - q', t" - t')e i_(q''+q')(p''-p')

for some function F. Of course, if 7-[ depends explicitly on time then F is not simply a function
of the time difference t" - t'.

2 Examples of the Universal Propagator

2.1 Vanishing Hamiltonian

Let us evaluate the universal propagator in three soluble examples. The simplest case is that of a

vanishing Hamiltonian which leads to

K (p", q", t"; p', q', t') = M f ei f [qb+k_i-_f_ldtDpDq2DkDx

= ./k/'f eifqi'dt_{o}_{ig}DpD q

= 2r6(p"-- p')6(q"-- q'),

where the normalization follows from the initial condition. Evidently this is the correct result.

2.2 Free Particle

The next case is the free particle where _(k, x) = k_/2m. In this event

K(p", q ", t"; p', q', t') = M f ei f(qi'+k_-_i'-k2/2r")dtDpDqDkDx

= A/'f eif(#+'_O2/2)dt,5{i_}Dp:Dq

[ 2rm 8" "
= V/(_:t, ) (P - p')eim(q"-q')_.2('"-¢).,/
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2.3 Harmonic Oscillator

The last case we consider is the harmonic oscillator where 7"l(k,x) = (k 2 + w2x2)/2. Now

K(p",q",t";p',q',t')

= .hal / eif[qi_+_q-_i_-(k2+_:x2)/2]dt_p_Dq_Dk_Dx

= A/" / e i f[qi'+(_2+i_2/"2)/2]dtDp_Dq

1

= (2i)-lcsc(wT/2)exp (i { 21--(q"A-q')(p"-p')+ _ cot(wT/2)[l(p"- pl) 2 A-w(q"-q,)2]))

(6)

where T - t" - t'. Observe that this result is rather different from conventional propagators for

harmonic oscillator Hamiltonians. Indeed, (6) is more like the propagator for a two-dimensional

free particle in a uniform magnetic field. 4 This result also applies even when w ---* iw, or with a

suitable limit, even when w ---* 0 leading to the free particle solution.

3 Propagation with the Universal Propagator

In order to check our results for the universal propagator let us put them to the test. For ease of

computation we choose as the initial state for our propagation the coherent-state overlap function

(p', q'; r/[p, q; r/),

and additionally we choose the fiducial vector It/) to be the ground state of an oscillator with

frequency f_for which (_1@1_)= 0 = (_IPI_). In that case the initial state reads

Cn(p',q',t' ) -- (p',q';_?lp, q;rl)

= exp (i (_(p'+ p)(q'--q)- l[l'_-a(p'-p)2+ 9/(q'-q)2]}) .

3.1 Free Particle

For the free particle case we need to compute (T = t" -v t')

v'--6 fexP{2mT_,(q._ q,)2 + 2(p,,+p)( q, .... q)l[_-l(p,, p)2 + _(q, q)2]}dq, ,

which is readily found to be [_ = (p" + p)/2,q -- (q" + q)/2,p* = p" - p,q" = q"- q]

¢,7(P", q", t")

- _ exp { im (fi2Tq*2/4 - Tp 2 + 2mpq*) p.2 f_(mq* - Tp) 2 } . (7)
- Cm + iflT/2 2 (m 2 + _2T2/4) 4_ 4(m 2 + fl-2T_)
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This result agrees with one obtained elsewhere s thereby establishing its validity.

In addition, as fl _ _ or 12 _ 0, Eq. (7), apart from a suitable scale factor, yields the result

in the sharp q or sharp p representation, respectively. 3'5 In particular, consider

¢(q",t") = lim 1 _/__ q",t")_-.oo_ ,,, ¢"(P"'
]--/7% i rn gMt__'t2

V 2zriT

which is the appropriate Schr6dinger representation solution for the free particle. Likewise, con-

sider

* 1 It"

¢(p", t") = lim =----_=_ ¢, (p , q', t")e -i(W'¢'-pq)
fl--*O zvmt

i .___ _.2 i-'--
= |ira =e-' 2,.-_aP - P

n-.0 2_/rfl

= _(p"- p)_-'_,

which is the proper answer in momentum space for the free particle.

1

1

3.2 Harmonic Oscillator

Finally, let us consider the time evolution for the harmonic oscillator as given by

(47ri)-'csc(wT/2)/ exp (i {_(q" + q')(p"--P')+ _cot(wT/2) - +w(q" q')J })

x exp {i_(p' + p)(q'-q)- l[fl-l(P'- p)2+ fl(q'- q)2]} dp'dq',

which is evaluated as [s - sin@T/2), c - cos@T/2)].

_,(p',q",t") = C(T)-½ exp (i_p" w2s2 -w2--c2-92c: + w:s 2 + ipq'w2c: + _2s:]

iwsc [_2q.2) _ iwa2s:2s2 ) (4__ a-2p-2)]× exp 4(_ + n_)(4P_ - 4(n_ +

x exp
f_(cp" + 2ws_) 2 flw2(cq "- 2";-'sP) 2]
4( f_2c_ + w2s2) - 4_{_-fl---_s2) ] , (8)

where

C(T) = cos wT + i-_ + sin wT.

As in the free particle case, we can obtain the sharp q propagator by the same kind of limit,

namely

1/-ff ,,
_b(q",t") = a--._lim-_V_b,(p ,q",t')

_/ w exp { iw [cos wT(q,,2+ q2)_ 2q"q] }= 27ri sin wT 2 sin---_T
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which, of course, is the standard result• Likewise, the sharp p propagator is given by

• 1 1 . .

= 7 q, t")e-'¢""q"-"q)
1 i

which, again, is the standard result.

We may also observe that the harmonic oscillator evolution simplifies considerably when fl = w.

In that case 1

where

qT = qcos(wT) +w-lpsin(a_T),

PT = pcos(wT) - wqsin(wT) ,

evolution equations that are seen to follow the classical solution.

3.3 Generalization

Although we have only shown that a limited set of fiducial vectors are correctly propagated by the

universal propagator, it should be fairly clear that the stated properties of the universal propagator

hold true. Indeed, the general case may be discussed by considering as initial condition

</_,q; rl[e-i_'OeiCPlp, q; rl) = e-iqd(p ' +/_, q' + q; fliP, q; Y)

= ei(_q'-_,')+i_(_-q) (pJ, ql; r/lp --/_, q -- _; r/)

for just a single It/), say a Gaussian with f_ = 1. Then a suitable superposition over/3, _ leads

to any fiducial vector of interest, while a second and independent suitable superposition over p, q

leads to any initial state ]_b) of interest.

4 Classical Limit

Although the universal propagator has been derived by identifying the relevant SchrSdinger equa-

tion as one for two degrees of freedom, it should nevertheless be true that the classical limit refers

to a single degree of freedom. This is possible, in the present case, because of the limited form of

the quantum or classical Hamiltonian.

Recall, under standard assumptions, that the classical action for a conventional coherent state

path integral reads, in the limit h _ 0, as

I = f_4 - 7_(p, q)]dt.
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Extremal variation of this expressionholding the end points fixed leadsto the usual Hamiltonian
equationsof motion,

_t = c3"H(p,q)/Op,

[a = -07"[(p, q ) / Oq ,

appropriate to a single degree of freedom. Let us denote a generic solution of these equations by

qc(t) and pc(t).

Before proceeding it is important to reexamine the "standard assumptions" that lead to this

result. For finite h the expression that represents the classical Hamiltonian in a coherent state

path integral is traditionally given by

H(p,q) = (p,q;rl[7-((P,Q)lp, q;rl )

= (rl[7"i(P +p,Q+q)lrl).

Normally, one restricts It/) so that (r/IQlrl) = 0 = (r/lPlr/), and (_[Q2lrl) --* 0 and (_[p21_) _ 0 as
h _ 0. In this case

llmH(p,q) = "H(p, q).
_,.--*0

However, in the present paper we want to deal with more general fiducial vectors [7/) such that

are arbitrary real variables. We still insist on vanishing dispersion as h _ 0, namely, that

(r/l(Q - q,)21r_) _ 0,

(r_l(P- p,)2lrl) --* 0,

as h _ O. This more general situation leads to the result

lira H(p, q) = 7-[(p + p,, q + q,)
tt---.O

as the representative of the classical Hamiltonian.

In this more general case the classical action appropriate to the ct herent state path integral
becomes

= J[(P + Pn)gl -- qnP -- 7-((p + Pn, q + qn)]dt.
I

In this expression p = p(t) and q = q(t), whilep, and q, are time-independent constants. The term

f(p, il - q,i_)dt = po(q" - q') - q,(p" - p') is a pure surface term and will not affect the equations

of motion; it could be eliminated simply by a phase change of the coherent states. Extremal

variation leads to the equations of motion

i1 = 07"-l(p + p,, q + q.)/Op

= --07"t(p + P,7, q + q,_)/Oq,
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which have as their solutions

q(t) = qc(t)- q. ,
p(t) = pc(t) - p. ,

where qc(t) and pc(t) denote a generic solution of Hamilton's equations when % = P,7 = 0, as

discussed above.

Finally, we note that although the dispersion of It/) vanishes as h --* 0, the generally nonva-

nishing values of q, and p, are vestiges of the coherent-state representation induced by I_l) that

remain even after h ---, O.

4.1 Classical Limit of the Universal Propagator

In the case of the universal propagator the expression that serves as the classical action is identified

as [cf. (5)]

I = f[qi_+ k4- xp- _(k, x)ldt. (9)

Extremal variation of this expression holding the end points fixed leads to the set of equations

Consequently

= /,:,

,_ = O'_(k,x)/ak,
i' = -O_(_.,x)/a_.

k = -oT_(_,_)lOx,

which show that (k, x) satisfy exactly the same equations of motion as do (pc, qc) in the usual

classical theory. Thus we may identify the solution k(t), z(t) with pc(t), qc(t). In addition, we
have

q(t) = qc(t) - Cq,

p(t) = pc(t)-- %,

where cq and cp denote two arbitrary integration constants. Among all possible values of cq and

% are those that coincide with qn and p, for a general [r/).

Thus we find that the set of solutions of the universal classical equations of motion appropriate

to the universal propagator includes every possible solution of the classical equations of motion

appropriate to the most general coherent-state propagator (with 17/) having vanishing dispersion

as h _ 0). Not only does the quantum dynamics (universal propagator) correctly evolve the state

vectors in a canonical coherent-state representation for a general ]¢), but the classical dynamics

(universal classical equations of motion) correctly evolves the classical phase space points accord-

ing to the coherent-state induced classical equations imprinted with arbitrary values of the only

remnant of the fiducial vector after h --* 0, namely its average coordinate and momentum values.
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5 Extension to Other Coherent States

We observe that the procedure to introduce a Schrhdinger equation and a path integral solution

for the universal propagator applies for other sets of coherent states, such as the spin coherent

states, the affine [or SU(1,1)] coherent states, etc. 8 In each of these cases it becomes possible to

introduce an appropriate universal propagator just by following the procedure we have given for
the canonical coherent state case.
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Abst ract

We use this simple example to show how the formalism of Moyal works when it is applied

to systems of identical particles. The symmetric and antisymmetric Moyal propagators are

evaluated for this case; from them, the correct energy levels of energy are obtained, as well

as the Wigner functions for the symmetric and antisymmetric states of the two identical

particle system. Finally, the solution of the Bloch equation is straightforwardly obtained

from the expressions of the Moyal propagators.

1 Phase-space Q M formalism

The original ideas of this approach to Q M are due to Weyl [1], Wigner [2] and Moyal [3]. States

and observables are no longer operators on a Hilbert space but functions on an adequate phase

space. The Weyl mapping relates both formalisms: given a function f defined over the phase

space R 2n, the corresponding operator F is given by

1

F= W(f)- (2".-h)" £ 2- f(u) II(u)du;
u = (q,p). (1)

Reciprocally, given an operator ,3i the associated function in the phase space is

--W-' (2)

As we can see, a central role is played by the "Grossman-Royer" operators [4, 5]:

[II(q, p)_](rl) = 2 n exp p(r I -

1On leave of absence, Departamento de F[sica Tedrica, Universidad de Valladolid, Spain.

(3)
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The twisted product of two functions is defined as the non-commutative operation that corre-

sponds to the product of operators:

(f × g)(u) = w-' (w(f)iv(g))

-' [7- (_-h)_"£.f(v)g(w)exp (uJv + vJw + wJu)] dv dw, (4)

where the matrix J is simply

(0,)J= -i 0 ' (.5)

being I the n-dimensional identity matrix.

In the Schr5dinger representation of quantum mechanics, the information about dynamics

is contained in the evolution operator _)(t). Its counterpart in this formalism is the "Moyal

propagator", defined as

Z(u, t) = l_-I (br(t)). (6)

It verifies SchrSdinger equation:
OF.

ih-_ = H x v. (7)

The Fourier transform of this function with respect to t gives the spectral projections parametrized

by E:
1

r(u, E) = _ £ --(u, t) d EtI_ dt. (8)

If the Hamiltonian is time independent, the support on E of F coincides with the spectrum of

// [6]. If/770 belongs to the discrete spectrum of/I, F(u, E0) is, but for a constant factor, the

Wigner function of the orthogonal projector into the proper subspace Eo [6]:

1
)/Y_(q, P) --

(2_h)-
w-' (l+)(,s,I)- 1(2.-h)- £. eiPY/h_*(q + y/2)¢(q - y12) dy. (9)

2 Phase-space Q M formalism for identical particles

In the standard formalism of quantum mechanics, to deal with a system of N identical particles,

we introduce a superselection rule: the space of physical states is a closed subspace of the initial

Hilbert space. The Hilbert space is splitted [7]

H = H+ ®H_ ®H_, (lo)

where 7-/+ is the Hilbert space of the wave functions symmetric under the exchange of any two

particles and 7-/_ the Hilbert space of the antisymmetric functions. The functions in Hw have no

symmetry of this kind. The orthogonal projectors are given by

1

P+=N--_.E P_,,
aEPN

l

P-- N! _ (-1)'(_)P°' (11)
a EPN
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where
(P__,)(a,,... ,x,) = ¢(xo0),..., xo(u)). (19_)

for any a in the group PN of permutations of N elements; zr(cr) is the parity of or.

If B is either an observable or an state in 7-{, the corresponding operators for a system of N

fermions or bosons are:

P_BP_ and P+BP+. (13)

If B is invariant under the exchange of particles, we have

P+B G = B P+ = P+ B. (14)

We use the Weyl transformation to translate these ideas into the language of phase space.

Therefore, the function for an state or observable when we consider N bosons or fermions is

W-I(P±BP+) = w-'(P±) × w-'(B) × w-'(P+). (15)

Due to the fact that the Weyl map is linear, all we need is the function for any permutation

a. As a can be written as the product of cyclic permutations with no common elements [8], it

is enough to compute the function corresponding to such a cycle. If we consider a general cycle

a = (1,2,3,...,M) we get:

& = 2(M-Onexp{ 2i M 1)k+t }h E (- ukJUl , M odd;
k=l;l>k

= (2 M-lrh)nS(ul-us+...-uM)exp --_ _ (-1) k+lukJul
k=l;l>k

(16)

, M even. (17)

As an example, for a two cycle that exchanges the particles i and j we have:

o,_(u,,... ,UN) = 0_(u,, uj) = (2_rh)_ ,5(u, - u_), (18)

and it can be checked that

(o,j x p x o_)(...u,,...u_,...) = p(...u_,...u,,...). (19)

The functions corresponding to the orthogonal projectors for a system of two onedimensional

particles are

1

p+(u,,u2) = _(1 -q- 2rd_5(u,-u2)), (20)

1

p_(ul,u2) = _(1-27rl_(Ul-Us)). (21)
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3 under an ex-Two onedimensional identical particles

ternal oscillatory potential

Along the present section, we intend to presenting an example of particular interest in order to

illustrate the preceeding discussion. We shall study the behavior of a two onedimensional particle

system subjected to oscillatory forces of the same frequency. If we do not take into account the

identity of the particles, the Hamiltonian will be simply:

1 2 m_2_ 2
H(u,,u_) = H(u,) + H(u2) = _m(p, + p_) + _(q, + q_). (22)

The corresponding Moyal propagator has been already evaluated [6], and is:

--(u,, us) = - cos 5-_t exp + H(u2))tan . (23)

Let us now introduce the statistics. As H(Ul,U2) is invariant under permutations of the two

particles, the Hamiltonian for our system of two identical particles is:

H=k(Ul,U2) = (// X p::k)(Ul,U2) = _HIul) + HIu2 ) ::_ 271._3(. _(Ul :y2) D'/O"2 _(Ul_ : U2)_;

\2rn(q,--q2) 2+ 2 (pl-p2)2] ;j
Z L

(24)

We see that, after symmetrization or antisymmetrization, the Hamiltonian on phase space of

our system is not longer (22) but (24). Equation (24) includes (22) plus an extra term. From this

term results an extra potential, due to the introduction of the statistics, which has a quite different

action depending whether the particles are fermions or bosons. In the first case, this potential is

preceeded by a plus sign and, therefore, it is equivalent to a delta barrier preventing that ql = q_

and pl = p_. This already suggests that both particles cannot remain in the same state and,

hence, that they fulfill the Pauli principle. This idea will be confirmed by our calculations for the

lowest energy levels. On the contrary, if the particles are bosons the extra term has a minus sign

and, consequently, it represents the apparition of a delta well. This delta well would rather favor

the presence of particles in the same quantum state. In a clear opposition to the case of fermions,

no exclusion principle can exist here.

The symmetrized Moyal propagator is obtained in a similar way:

-e(Ul, u2) - 2 cos 3 _ exp k, }t_o- tan
2

+(-i) exp _-i H(ul + u2) tan exp H(ul. - us) cot 5- (25)
_t

cos -_- sin ___£t
2

Comparing with (23) we see that there is also an extra term due to the statistics.

The spectral projections are obtained from (8) and (25); in this case we obtain

oo

r±(ul, E) = _--_(-1)k3 (E - hw(k + 1))
k=0

>( _ It (-4H.(u !_ (4H(u2)'_ (2/f(UlJf-U2)_ (2"(Ua--U2))]n=0t \ / _, hw / \ hw / _ _d .(26)
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From here, the well know energy levelsare obtained for the fermionic and bosoniccases.Let us
notice the coefficientof 5(E - hw), that vanishes for fermions but not for bosons.

We can evaluate the Wigner functions corresponding to states of two particles, in states i and

j. Let us write those functions as _Y_, the corresponding to the antisymmetric state, and W_j the

associated to the symmetric state. We then have:

F+(ul, u2, E)

F-(ul,u2, E)

= (2_'h)2[ W_0(q,p) 5(E-hw ) + I/Y_l(q,p) 5(E- 2hw)

+ 0,V_x(q, p) + 1,V_2(q, p)) 5 (E - 3hw) + • • .], (27)

= (27rh)2[_V_(q,p)5(E-2hw)+YY_2(q,p)5(E-3hw)+...]. (28)

The coefficients of the 6 are the Wigner functions of the orthogonal projector on the corresponding

eigenspaces.

To finish, let us solve the Bloch equation, that is, let us find the Wigner function corresponding

to the density matrix of the canonical ensemble for the system we are considering. Bloch equation

reads simply:
0fl

- Hxa=-_xH, _=l/kr, (29)
09

that is, it is Schr6dinger's equation with the change t ---+-iht3.

But, as we already know the form of the Moyal propagator, we can write inmediately the

solution for 9t(u_, u2,/7) by making the change t ---* -iht3 in --+(Ul, u2, t). We get:

1{ 1 (.- 2(H(UX.h)_+ H(u 2)) t anh__ ) (30)fl+(ul,u2,13) = _ cosh _ _ exp
2

exp{_-_H(ux+u2) tanh-_ A} exp{_H(ul-u2)coth_-_-2 } } (31):t: cosh _ sinh _ "
2 2

After integration of fl(ul, u2,/3) over the phase space, we get

exp(-4-h_o/3/2) (32)
Z+(/3) = 8 cosh( h_o/3/2 ) sinh 2( hw/3/2 ) .

From this partition function, we can obtain the thermodynamical quantities, for example the

internal energy, the free energy and the entropy

E+(/3) = -_- tanh +2coth _ } ,

F+ (/3) = _ (log [cosh -h-_] + 2 log [sinh _-_ - ]

S+(/3) = k {)--_- [earth -_

(33)

(34)+log8 :F -_-,

+2coth_ -] -ln[cosh-_]-21n[sinh-_ --] -INS}. (35)

Notice that the entropy is the same in both cases (bosonic and fermionic).
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